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Abstract

Fisher-Mellor defined knotwork design as a type of alternating link diagram related to Celtic
knots ([3]). In this paper, we define Celtic knot design (CKD) induced from p x ¢ square grid
and p x g honeycomb grid as a generalized knotwork design. We show the geometric properties
of CKDs from these grids and present how these structures can be mathematically described and
classified. These concepts and results support mathematics education by deepening understanding
of geometric structures and work well with technology-enhanced instructional design ([4]).This
multidisciplinary approach, integrating mathematics, art, culture, and technology, offers potential
applications in STEAM education.

1 Introduction

The Celtic knot is a traditional geometric symbol of the Celtic peoples of ancient Britain, Scotland,
and Ireland. It appears in [7] and in cultural works such as the Book of Kells, a bible manuscript
decorated with many Celtic knots. P. R. Cromwell introduced the Celtic knot into knot theory ([1, 2]).
In 2004, G. Fisher and B. Mellor showed results for “Celtic knot design induced from p X ¢ square
grid” ([3]). Our study presents results for Celtic knot design (CKD) induced from both p X ¢ square
grid and p x q honeycomb grid. Specifically, while Fisher and Mellor focused on the number of
components in square grid-based designs, our study provides new results on the number of crossings,
diagram shapes, component classification, and geometric properties of CKDs such as decomposition
into substructures. We extend our results for the CKD induced from a p X g square grid by introducing
CKD derived from p x ¢ honeycomb grid.

In Section 2, we introduce basic definitions of knot theory and give key definitions of CKD, p X ¢
square grid, p X ¢ honeycomb grid, spur, track, etc. We also show known results and some of our
own. In Section 3, we show main results of the CKD induced from a p X ¢ square grid and a p X ¢
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honeycomb grid (Proposition 3.2, Theorem 3.14, Theorem 3.15, Theorem 3.16, Proposition 3.21,
Theorem 3.22, Corollary 3.23, Theorem 3.28, and Proposition 3.29). Results of the CKD induced
from a p X ¢ honeycomb grid correspond to results of the CKD induced from a p X ¢ square grid.
For example, results on the number of components of the links represented by CKDs are shown in
Theorem 2.9 ([3]) and Theorem 3.15, and results on the shape of CKDs are shown in Proposition 3.1,
Proposition 3.2, Theorem 3.22, Corollary 3.23, and Proposition 3.24.

Programming education has become more popular around the world in recent years. As of 2024,
about two-thirds of countries offer some form of computing education in their school curricula,
growing fast in Africa, Asia, and Latin America [10]. In this context, Japan introduced mandatory
programming education in elementary schools in 2020. The animations developed by Y. Funakoshi [4]
for constructing Celtic knot projections based on p X ¢ square and honeycomb grids not only sup-
port mathematical education, but also serve as effective tools for programming education. These
constructions can be implemented algorithmically, allowing students to engage with computational
logic, geometric reasoning, and visual creativity. By integrating mathematical structure, algorithmic
thinking, and artistic design, CKDs provide a rich interdisciplinary platform for STEAM education.
These visual constructions enable exploration of symmetry, pattern generation, and cultural narratives,
which align closely with its educational, creative, and integrative goals [11].

2 Preliminaries

2.1 Terminologies in Knot Theory

Definition 2.1 (component, link, knot). An r-component link is a union of r disjoint smooth embed-
dings of S! into R3. Each image of S' is called a component of the link. A 1-component link is called
a knot.

Definition 2.2 (projection, diagram, component segment set, crossing, trivial). Let p : R® — R? be a
projection and L be a link in R3. If all multiple points of p(L) are transverse double points, then p(L)
is called a projection of L. A diagram of L is a projection with over/under information at each double
point. A diagram of a knot is called a knot diagram. The union of segments composing a diagram
that corresponding to a component of L is called the component segment set. A point in a diagram of
L corresponding to the double point in p(L) is called a crossing. A self crossing is a crossing on a
single component. A knot is trivial if it admits a diagram with no crossings.

On the other hand, a projection may be regarded as obtained from a diagram by ignoring the
over/under information of the crossings.

Definition 2.3 (alternating). Fix a base point on each component segment set of a diagram of a link
and travel along it. The diagram is alternating if the crossings alternate over and under along each
component segment set. A link is alternating if it admits an alternating diagram.

Definition 2.4 (plane ambient isotopy). For a projection of a link, an ambient isotopy in R? is called
plane ambient isotopy. For projections P;, P, of a link, suppose that P, is plane ambient isotopic
to . Moreover, for diagrams D, D of the link, if P, (P, respectively) is obtained from D; (D-
respectively), then we say that [, is plane ambient isotopic to D- as in Figure 1.
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Figure 1: P, is plane ambient isotopic to P, and D, is plane ambient isotopic to Dy, Dy, and Ds.
However, P is not plane ambient isotopic to P, nor is Dy to Ds.

For diagrams A, B, if B is obtained from A by parallel translation in R?, then we denote A || B.
For example, D, || Ds and D, || D; (i = 2,3,4) as in Figure 1. For the definitions of other standard
terms in knot theory, we refer to “A Survey of Knot Theory” ([6]).

2.2 Definition of Celtic knot design and its known results

Definition 2.5 (grid). A closed subset of a tiled R? whose boundary consisting of some edges of the
polygons is called a grid. For a grid GG, the boundary of G is denoted by 0G.

Definition 2.6 (Celtic knot projection, Celtic knot design). Draw a new polygon inscribed at the
midpoints of the edges for any polygon forming a grid. Then the union of the new polygons is
considered a projection of a link. The projection is called Celtic knot projection (CKP). A diagram
obtained from the CKP by adding alternating over/under information for each double point is called
Celtic knot design (CKD).

Note that a CKD may represent either a knot or a multi-component link. In this paper, we use the
term CKD to denote diagrams representing the corresponding link. To align with our definitions, we
redefine p X q knotwork panel ([3]) as follows:

Definition 2.7 (p x ¢ square grid). Let p,q € N with p < ¢q. We say that a grid is the p X ¢ square
grid if the grid is arranged by p X ¢ squares vertically and horizontally on an orthogonal coordinate
system, where the length of a square composing the grid is 1 as (a) in Figure 4.

In general, a diagram is obtained from a link. In this paper, a CKD defines the link. A CKD varies
depending on how it is added over/under information for any double point of a CKP.

Remark 2.8. Any grid has two CKDs.

These two CKDs are mirror images of each other as (a) or (b) in Figure 2. In this paper, we fix the

over/under information for any crossing as in Figure 3.
& &

(a) | (b)

Figure 2: There are two CKDs for each grid.
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X

Figure 3: The over/under information of the crossing on an edge of a polygon of a grid

Let G be a p x ¢ square grid and D be the CKD induced from G as (b) in Figure 4. For any
component segment set of [, a knot diagram is obtained by ignoring the over/under information of
the crossings except for the self crossings. Then, IC% denotes the set of the knot diagrams. In this
paper, each component segment set is colored by one color, and two different component segment sets
are colored by different colors. The element of ICﬁD formed from a component segment set is colored
to match the set. Let 7 = ged(p, q), p’ = 2, and ¢’ = £

YA

(a) (b)

Figure 4: The p x ¢ square grid and the CKD induced from the grid

Theorem 2.9 ([3]). A CKD induced from a p x q square grid represents an r-component link.
Since p’ and ¢’ are relatively prime numbers, we have;
Corollary 2.10. The CKD induced from the p' x ¢' square grid is a knot diagram.

Let P be a projection obtained from an element of ICﬁD. Then, P consists of the line segments,
where each line segment has slope 1 or —1 on the orthogonal coordinate system and the end points of
each line segment are on 0G.

Claim 2.11. The projection P intersects on the left and the right sides of OG at p' points each, and P
intersects on the upper and the lower sides of OG at ¢’ points each.

Proof. Let the base point be the top intersection of P and the left side of 0G. We travel on P clockwise
from the base point to the same point. Let &k, ¢ € N be the numbers of vertical and horizontal roundtrips,
respectively. Based on the slopes of the segments and the shape of G, 2pk = 2¢¢ holds. Let (k, () € N?
be the minimal solution to the equation. Then, pk = ¢f = lcm(p, q) holds. Furthermore, this fact
together with pg = lem(p, q)gcd(p, q) = lem(p, q)r shows that £ = 2 = p/, k = 4 = ¢'. Hence, P
intersects on the left and the right sides of OG at p’ points each, and P intersects on the upper and the
lower sides of OG at ¢’ points each. ]

Moreover, Fisher and Mellor claimed that any element of IC% is plane ambient isotopic to the
CKD induced from the p’ x ¢’ square grid ([3]). We show own proof of this claim as Theorem 3.5 in
Section 3.1.
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Example 2.12. Let D be the CKD induced from the 6 x 9 square grid. K; € ICﬁD (2 =1,2,3)1s plane
ambient isotopic to the CKD induced from the g X % square grid in Figure 5.

9
<\/\\ K Q pyoaNy, SONERYSANERYY 3
A > / C X D \.//
6 ,/\\/ KL 0 ERVER NV 2
&/ X N \\ N // N
SARAAARAARASL & X/ d /
D Kl K2 KB

Figure 5: A relationship between the CKDs induced from the 6 x 9 and the 2 x 3 square grid

2.3 Celtic knot design of p x ¢ honeycomb grid

Definition 2.13 (p x ¢ honeycomb grid). Let p, g € N with p < ¢q. We consider an oblique coordinate
system with an angle of % rad on the plane. Let A = {(z,y) e R*}1 <2 < ¢, 1<y <p,z,y € N}.
For any (z,y) € A, draw a regular hexagon centered at (z, y) with side length \/Lg as in Figure 6. The
union of the p x ¢ regular hexagons is called the p x g honeycomb grid, and each hexagon with central

coordinate (x,y) is simply denoted by (z, y).

Figure 6: A black dot in the left figure represents the point (z,y) € A as the center of a regular
hexagon that contains itself, and the right figure represents the p x ¢ honeycomb grid.

Let G be a p x ¢ honeycomb grid and D be the CKD induced from G. For a hexagon (m,n)
composing G, let (m,n)i, ..., (m,n)s be the midpoints of the edges of (m, n) ordered as in Figure 7.
We may express to “the spur passes through (1,n); ((m, 1)4, (¢,n)s, (m,p); respectively)” as “the
spur passes through the regular hexagon in the leftmost column (the bottom row, the rightmost column,
top row respectively) of G”’.

For any component segment set of D, a knot diagram is obtained by ignoring the over/under
information of non-self crossings. Then, K7, denotes the set of the knot diagrams.

Definition 2.14 (spur). We say that an element of K7, is the spur of D if the element passes through
the point (1, p);.

Definition 2.15 (track). The set of elements of K7, other than the spur is called the frack of D.
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(m,n)ﬁo (m,n) O(m,n)g

()%, ),

Figure 7: The black dots represent the midpoints of the edges of (m,n).

Example 2.16. Let D be the CKD induced from the 7 x 11 honeycomb grid. The spur and the
elements of the track of D are as in Figure 8.

Figure 8: K is the spur of D and K, K3 are the elements of the track of D.

In this paper, each component segment set is colored by one color, and two different component
segment sets are colored by different colors. The element of K}, formed by a component segment set
is colored the same color as the component segment set. In particular, the spur is depicted in red.

Fact 2.17. For any p x q honeycomb grid G, the spur bends only at OG as in Figure 9.

(1-,1))/ @ Y (a.p)
NS/ NGV N

58 6

Y
Figure 9: m # 1,qand n # 1, p.

Let the base point O be the point of the spur at (1,p); as in Figure 10. We travel on the spur
clockwise from O.

Figure 10: The travel on the spur from the base point O




The Electronic Journal of Mathematics and Technology, Volume 20, Number 1, ISSN 1933-2823

Theorem 2.18. The spur of D passes through (q, 1),.

Proof. We begin traveling clockwise on the spur from O, move toward the lower right, and return to O
in the direction toward the upper left. Let m’,n’ € Nwith2 <m’ <¢,1 <n’ < p—1. By Fact2.17,
it is only at (m’, 1)4, (¢, n’)4 that the spur may bend toward the upper left direction. Before we pass
through (m’, 1)4, (q,n')s (M’ # ¢, n’ # 1) toward the upper left direction, the direction of this travel
changes toward upper left at least once. Then, the direction of the travel changes to upper left for the
first time at (g, 1)4. Hence, the spur passes through (¢, 1), as in Figure 11.

\_> (¢,1)

Figure 11: The spur of D passes through (¢, 1).

3 Main results

3.1 Results of Celtic knot design of p X ¢ square grid

Let G be a p x g square grid and D be the CKD induced from . Let ICﬁD be as in Section 2.2. Let
r=gcd(p,q),p =2%and ¢ =2 For1 <i<p',1<j<¢,letG(i,j) be aclosure of a piece of G
obtained by dividing G into p'q’ pieces where the closure is the r x r square grid and the closure is
located ¢-th from the top and j-th from the left on G.

Proposition 3.1. The crossings of D on 0G(i, j)s are the self crossings.

The proof of Proposition 3.1 is given together with that of Proposition 3.2.

For any i, j, take a small disk at any crossing on 0G(i,j), and let D(i,j) be the diagram on
G(i, j) obtained by replacing the small disks as in Figure 12. Then, any D(i, j) is alternating by
Definition 2.6. Thus, any D(i, 7) is regarded as the CKD induced from G (3, j).

Figure 12: The deformation for obtaining D(i, j)s from D

Forl < k < r,lete, € K%(l 1 that has the k-th intersection from the top on the left side of

dG(1,1). Let D(1,1)2 be the image of D(1,1) rotated by Z rad on G(1,1). Then, ¢y is transformed
into the k-th element from the left that passes through the lower side of 0G(1,1).
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Proposition 3.2. Ifi + j is even, then D(i, j) || D(1,1). Ifi + j is odd, then D(i, j) || D(1,1)%.

Proof. Let P be a projection obtained from an element of IC%. P has at least one intersection with
each side of G by Claim 2.11. Let the base point be the top intersection on the left side of 0G. We
travel on P clockwise from the base point to the same point. For simplicity, we may call the travel P.

First, we divide P into the parts from the left side to the right side of JG and from the right side
to the left side of 0G.

bL-R: The part of P that starts from the base point on the left side of G and reaches the right side
of 0G

The base point of P is on G(h, 1) where 1 < h < p'. Let k € N such that P starts from the base point
in the k-th square from the top left square of G(h, 1) as in Figure 13, where 1 < k < r. If h = 1,
P is reflected by the upper side of 0G(1,1). If 1 < h, P passes through the upper side of 9G(h, 1).
Then, the intersections of 0G(1, g) and P as in Figures 14 and 15 are determined by the slopes of the
line segments composing P. (a)~ ((e)" respectively) in Figure 13 corresponds to (a) ((e) respectively)

in Figure 14. Thus, the part bL-R starts from (a) or (e).

(a)” ()

7N
k GV/ \\ k ( 4

r—k \ r—k

Figure 13: Each dot represents the base point on G(h, 1), and each arrow represents the line segments
with the direction of the travel on G(h, 1).

(a) (b) (c) (d) (¢) ()
k (/’\ AN k (

N N A A

k(N ko k(N -

Figure 14: The part bL-R or a part L-R consists of the arrows, where each arrow represents the line
segments with the direction of the travel on G (3, j).

case (a): P passes through (a) in Figure 14

Step 1. If P reaches the right side of OG by (a), the part bL-R is finished. If P goes straight after
(a), then P repeats (b), (c) in this order, P goes into (d) after repeating (b), (c), or P goes into (d)
directly. When P reaches the right side of OG via (c), the part bL-R is finished. When P is reflected
by the lower side of OG via (d), we go to Step 2.

Step 2. If P reaches the right side of G via (d), the part bL-R is finished. If P goes straight after
(d), then P repeats (e), (f) in this order, P goes into (a) after repeating (e), (f), or P goes into (a)
directly. When P reaches the right side of OG via (f), the part bL-R is finished. When P is reflected
by the upper side of G via (a), we go to Step 1.

case (e): P passes through (e) in Figure 14

P is reflected by the upper side of G via (a) after repeating (e), (f) in this order since p’ < ¢’. We
go to Step 1 in case (a).
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Hence, the part bL-R is finished at (a), (c), (d) or (f) in Figure 14. Then, a part R-L starts from (g),
(h), (j) or (k) in Figure 15.

R-L: A part of P that starts from the right side of OG and reaches the left side of 0G

(g) (h) () 0) (k) V)

/

\./] \o k k k

yd

Figure 15: A part R-L consists of the arrows, where each arrow represents the line segments with the
direction of the travel on G (3, j).

By similar arguments of the part bL.-R, a part R-L is finished at (g), (i), (j) or (1) in Figure 15. If a part
R-L is finished at G(h, 1), P is finished at (g) or (i). Otherwise, a part L-R starts from (a), (b), (d) or
(e) in Figure 14.

L-R: A part of P that starts from the left side of G and reaches the right side of 0G

By similar arguments of the part bL-R, a part L-R is finished at (a), (c¢), (d) or (f) in Figure 14. Then,
a part R-L starts again.

By the above argument, the connections obtained from the travel on P between the figures in
Figure 14 and Figure 15 are illustrated by the arrows as in Figure 16.

Figure 16: (a) — (b) represents that P passes through G/(i, j) by (b) after (a).

Next, for any G/(i, j) that P passes through, we consider the parity of i + j. P passes through
G(i—1,75),G(i+1,7), G(i,j — 1) or G(4,j + 1) after G(¢, 7). For i, j, the numbers (i — 1) + 7,
(i+1)+j,i4+(j—1)and i+ (5 — 1) have the same parity, and have the different parity from 7 + ;.
This fact together with the connections between the figures in Figure 14 and Figure 15 shows that
a connected pair of one of (a)-(f) and one of (g)-(1) in Figure 16 has the same parity. Moreover, a
connected pair of (a)-(f) or a connected pair of (g)-(1) in Figure 16 has the different parities. Hence,
(a)-(f) and (g)-(1) are classified into two sets based on the parity of 7 4 j: (a), (c), (e), (g), (1), and (k)
belong to one set, while (b), (d), (f), (h), (j), and (1) belong to the other set.

Finally, we focus on the shape of the union of the line segments composing P on any G(i,7)
which P passes through. By the previous argument, for 1 < ¢ < p/,1 < j < ¢/, the union on
G(i, j) consists of figures belonging to one of the two classified sets. Then, the union is a subset of
the rectangle. The perimeter of the rectangle is 2v/2r. On the other hand, recall that the length of
P is 2¢/2p'¢'r by Claim 2.11, and G is divided into p'q’ G(i, j)s. Thus, the union is the rectangle.
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Any double point of P is on | dG(i, ). Hence, any crossing of an element of K% is on | JdG(4, j)s.
Therefore, Proposition 3.1 is proved. Since Theorem 2.9 and the fact that the union of the line segments
composing P is the rectangle on any G(i, j), there are r rectangles on any G(i, j), where any two
rectangles on G (i, j) are formed by two projections obtained from mutually different elements of IC%.
Then, for any pair of 7, j, the union of the rectangles on G (i, j) is regarded as the CKP obtained from
G(%, 7). On the other hand, the rectangles formed by P on G(i, j) with even and odd values of i + j
are J-rotationally symmetric to each other. Then, the CKPs obtained from G(i, j) with even and odd
values of 7 + j are also T-rotationally symmetric. Hence, D(3, j)s with even and odd values of i + j
are also 7-rotationally symmetric, by Definition 2.6. Then, Proposition 3.2 holds by the parity of
1+ 1. ]

/

Corollary 3.3. The number of D(i, j)s with D(i, j) || D(1,1) is [E][%] + |2 | |4 ], and the number
of D(i, j)s with D(i, j) || D(1, )% is [£115] + [5]T4]-

Example 3.4. Let Dg, 9 be the CKD induced from the 6 x 9 square grid. The number of D(3, j)s with
D(i,5) || D(1,1) is 3, and D(3,5)s with D(i, j) || D(1,1)% is 3 as in Figure 17.

>

/v
S

KX

X SOPRNEX

Figure 17: Dg,o and the arrangement of D(1,1)s and D(1,1)2s on Dgyg

We provide our own proof of the claim by Fisher and Mellor, which was mentioned in Section 2.2.

Theorem 3.5 ([3]). Any element of IC%j is plane ambient isotopic to the CKD induced from the p' x ¢’
square grid.

Proof. First, we compare P obtained from an element of IC?j and the CKP obtained from the p’ x ¢
square grid. Each of the left and right sides (the upper and lower sides respectively) of OG is divided
into p’ (¢ respectively) equal parts of length r. Then, take the midpoint for any part. Connect each
midpoint on the left or lower (left or upper respectively) sides of G to the midpoint on the right or
upper (right or lower respectively) sides of G by the line segment of slope 1 (—1 respectively). The
union of the line segments is regarded as a projection of a link, since each midpoint is connected by
line segments of slopes 1 and —1. The projection, denoted by P, is the enlarged r times figure of
the CKP obtained from the p’ x ¢’ square grid. By the above argument and Proposition 3.2, each of
2(p' + ¢') equal parts of OG contains one point of P and one point of P’. The line segments connected
to each midpoint are kept fixed with the slopes preserved, while each point of P’ is moved to coincide
with the corresponding point of P. Then, P’ and P coincide as projections. Hence P is plane ambient
isotopic to the CKP obtained from the p’ x ¢’ square grid.

Next, we focus on the over/under information of a crossing. Let K & /Céj that obtains P. P
divides G into rectangles and triangles. For any polygon of P, each vertex on 0G doesn’t correspond

10
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to a crossing of K, and each vertex on the interior of GG corresponds to a crossing of K. Take the
checkerboard coloring for K where the top crossing of K on a shaded region is on a horizontal
edge of GG. Then, regions of K corresponding to some rectangles of P are shaded, and a region of
K corresponding to any triangle of P is not shaded. By the following mention of Remark 2.8, the
coloring at a neighborhood of any crossing of K is as in Figure 18. On the other hand, for the CKD
induced from the p’ x ¢’ square grid, take the same checkerboard coloring as the above. By the same
argument as the above, the coloring at a neighborhood of any crossing of the CKD induced from the
p’ X ¢ square grid is as in Figure 18. Since P is plane ambient isotopic to the CKP obtained from the
p’ X ¢’ square grid, over/under information of the top or bottom (the left or right respectively) crossing
on a shaded region of K and the top or bottom (the left or right respectively) crossing on a shaded
region of the CKD induced from the p’ x ¢’ square grid are the same. Therefore, any element of ICﬁD
is plane ambient isotopic to the CKD induced from the p’ x ¢’ square grid. [

Figure 18: The over/under information of the crossing on an edge of a polygon of (G, and the
checkerboard coloring of a neighborhood of the crossing

Corollary 3.6. Any element of IC% is alternating.

In general, the crossing number of a link is defined as the minimum number of crossings among
all possible diagrams of the link. On the other hand, Lemma 3.7 and Proposition 3.8 present results
for the number of crossings in a specific diagram, which is different from the crossing number.

Lemma 3.7. D has 2pq — p — q crossings.

Proof. By Definition 2.7, the cardinality of the set of the sides of the squares composing G without
0G is 2pq — p — q. Moreover, for any element of the set, there exists a crossing of DD on the midpoint
of the element by Definition 2.6. Hence, D has 2pq — p — ¢ crossings. Il

Proposition 3.8. Any element of IC§j has 2p'q' — p' — ¢ crossings.
Proof. It follows from Theorem 3.5 and Lemma 3.7. 0

Remark 3.9. Kauffman, Murasugi and Thistlethwaite showed that if a link L admits an alternating,
irreducible diagram of m crossings, then L cannot be projected with fewer than m crossings ([5, 8, 9]).
This fact together with Proposition 3.8 shows that the minimal number of the crossings of any diagram
of the knot represented any element of ICE) is 2p'q' — p’ — ¢’ except for the CKD induced from a p x np
square grid.

11
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3.2 Results of Celtic knot design of p x ¢ honeycomb grid

For a p x ¢ honeycomb grid G, let (m, n), (m,n); i = 1,2...,6), D, K3}, and O be as in Section 2.3.
The spur of D passes through at least one reglar hexagon in the rightmost column of GG by Theorem 2.18.
Let (g, s) be the top regular hexagon that the spur passes through in the rightmost column of G as in
Figure 19, and letr :=p — s + 1.

\ ) ////

Figure 19: The shaded hexagon represents (g, s).

Forr > 2,k e N(1 <k <r—1),let T, € K3 passing through (¢,p — r + 1 + k)4 and
L := {the spur, T} }.

Lemma 3.10. Any pair of elements of L are different elements of K7,.

Proof. Since the spur passes through (¢, p — r + 1)4, if 7 > 2, then T} is not the spur. Leti,j € N
where 1 < § < f{i—}, 1 <5< %. We travel on all of 7} simultaneously counterclockwise from
(¢,p — r + 1 + k)4. By Definitions 2.6 and 2.13, for any 4, j, all of T}, simultaneously pass through
(1,(j—1)(r+1)+k); on OG. Similarly, all of T}, simultaneously pass through ((i —1)(r+1)+k, 1)4,
(¢, —D(r+1)+14k)s, ((: —=1)(r+1)+ 1+ k,p); on OG. Then, the mutual positional relation
of any pair of 7} is not deviated during the travels. Hence, all of 7T}, are different elements. Therefore,

any pair of elements of L are different elements. [
By the definition of » and Lemma 3.10, Proposition 3.11 holds.

Proposition 3.11. For p € N, if ¢ = p, then the spur of D has no self crossing and each element of
the track of D has one self crossing.

We travel clockwise from O to O via (¢, 1)4 on G by Theorem 2.18. The travel from O to (g, 1),
is called the first half travel. The travel from (g, 1)4 to O is called the second half travel. Let S; (S,
respectively) be the subset of the projection obtained from the spur corresponding to the first half
travel (the second half travel respectively), with over/under information added to the crossings that are
passed through twice during the half travel.

Lemma 3.12. [f the spur traverses (q, 1) clockwise, then Sy passes through the regular hexagons left
or lower adjacent to the regular hexagons which S, passes through.

Proof. We consider the travel on S; that starts from O clockwise, and the travel on S5 that starts
from O counterclockwise simultaneously. Note that, the direction of the travel in this proof on S, is
opposite of the direction of the second half travel. Let,7 € N where 1 < ¢ < gi—i, 1< < f%.
By a similar argument of the proof of Lemma 3.10, S; passes through (1, j(r + 1)); and S, passes

through (1, j(r + 1) — 1); simultaneously. If j = fﬁ, (1,7(r + 1))1 is not defined. In this case,
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Sy passes through (1,p);. S; passes through (i(r + 1), 1), and S passes through (i(r +1) —1,1),
simultaneously. If i = %, (i(r 4+ 1), 1), is not defined. In this case, S; passes through (¢, 1)4. 51
passes through (¢, (j — 1)(r + 1) + 1)4 and Sy passes through (¢, (j — 1)(r + 1)), simultaneously.
If j =1, (¢,(j — 1)(r + 1))4 is not defined. In this case, Sy passes through (¢, 1);. S; passes
through ((¢ — 1)(r + 1) + 1, p); and S, passes through ((i — 1)(r + 1), p); simultaneously. If i = 1,
((t—=1)(r+1),p); is not defined. In this case, S, passes through (1, p);. Then, S; and S; are parallel

during the travels except for (1, p) and (g, 1) since S; and S, are closed at (1, p); and (g, 1)4. O

Definition 3.13 (broken segment, length of a broken segment). Let Pk be a projection obtained from
K € K7,. A subset of a line segment composing Px which has just two points intersecting with 0G
is called a broken segment (of K ). The length of a broken segment is the distance between the two
intersections.

Theorem 3.14. If the spur of D traverses (q, 1) counterclockwise, then D is a knot diagram.

Proof. Let (m,,p) be the e-th regular hexagon in the top row of G which the spur passes through
during the travel from O to O. By O = (1,p);, (m1,p) = (1,p) holds. Let b, be the number of
the regular hexagons in the top row of G from (¢, p) to (m.,p). If e = 1, then by = ¢ > p. Thus,
1 <b. < gand m, = q — b. + 1 hold. Then, there are three cases.

Assume b; = ¢ = p. The spur traverses (¢, 1) = (p, 1) clockwise by Proposition 3.11.

Assume b; = q¢ = p+ 1. The spur traverses (¢, 1) = (p+ 1, 1) counterclockwise. Then, Sy passes
through p hexagons in the top row of G (2,p),...,(p + 1,p) in this order, that is, b = p — e + 2,
(e=2,3,....p+ 1.

Assume by = g > p+2. Then by = b; — p — 1 holds. Moreover, suppose thate > 2. If b, > p+ 2,
then b..1 = b, — p — 1. If b, = p + 1, then the spur traverses (g, 1) counterclockwise. If b, = p, then
the spur traverses (g, 1) clockwise. If b, < p — 1, then b.,1 = ¢ — p + b.. Hence, it is enough to
consider this case b, = p + 1.

We may suppose that the spur passes through (1, p); ((¢, 1)4 respectively) in .S (S, respectively).
Let u; (uy respectively) be the number of the regular hexagons in the top row of G that S; (S
respectively) passes through. Let v; (vy respectively) be the number of the regular hexagons in the
rightmost column of G that S; (S respectively) passes through. Recall that G is on the oblique
coordinate. By Definition 3.13, S and .S, consist of broken segments. Focus on the broken segments
with the directions composing the first half travel S; such that the direction of each broken segment
corresponds to the positive direction of the x-axis. By the sum of the lengths of the broken segments,
pP+Du—vi=qrn+1) e —-p+DHu+(¢+)(nn+1)=1u = er)g’%)*l holds. Since
uy,v1 € N, ged(p+1,q+ 1) = 1 holds. Focus on the broken segments with the directions composing
the second half travel S5 such that the direction of each broken segment corresponds to the negative
direction of the z-axis. By the sum of the lengths of the broken segments, (p+1)(u2+1)—(v2+1) = qug

&y + 1 = arDdet)  (gi)ith=1 4 ] = % —u; holds. Since us+1 € Nand
(gt1)(v1tvz+1l)

p+1 p+1
u; €N, ( =l ) ¢ N holds. By these arguments, since ged(p + 1,g+ 1) = 1 and v; + vy < p,

Wxﬁ%ﬂ) € N & vy + v9 = p holds. Suppose that the track is not empty. There is at least

one regular hexagon that an element of the track passes through in the leftmost column of G' by
Definitions 2.6, 2.13 and a similar argument of the proof of Theorem 2.18. The same is true for
regular hexagons in the bottom row, the rightmost column and the top row of GG. This fact together
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with the above argument shows that if the spur of D traverses (g, 1) counterclockwise, then D is a
knot diagram. [

Theorem 3.15. D represents an r-component link.

Proof. We prove L = K7, by dividing r into two cases.

Casel: r > 2
There is at least one element of K7, which is not the spur. Let 7,5,k € N where 1 < ¢ < qﬁ,
1< < %, 1 <k <r —1. By arguments of the proofs of Lemmas 3.10 and 3.12, any regular

hexagon in the leftmost column of G is passed through by an element of L. The same is true for the
regular hexagons in the bottom row, the rightmost column and the top row of GG. Then, L = K7, holds
for r > 2. We showed Theorem 3.15 in the case of r > 2.

Case2: r =1
L = {the spur} holds. By Theorem 2.18, the spur passes through (g, 1),. If the spur passes around
counterclockwise at (¢, 1), then L = K}, by Theorem 3.14. Assume that the spur passes around
clockwise at (¢, 1)4. We show that there are no elements of K}, \ L. We assume that there exists an
element of K}, \ L, denoted by 7. By a similar argument of the proof of Theorem 2.18, T" passes
through at least one regular hexagon which has an intersection point of 7" and each side of 0G. Let
(q,m1)4 be a point which 7" passes through. Since the spur passes through (g, 1)4, we see that 1 < n;.
Let (¢q,n2)4 be the point which the spur passes through where ny < n; and n; — ny is minimum.
For any point (g, n}), which the spur passes through, there exists the point (¢, n}), which T" passes
through such that n| — n}, = n; — ny by similar arguments of the proof of Lemma 3.10 and 3.12.
Hence, the fact contradicts » = 1. Thus, there are no elements of X}, \ L, i.e., L = K3, holds.
Therefore, D represents an r-component link. O

Theorem 3.16. If gcd(p + 1,q + 1) = 1, then r = 1 and the spur traverses (q, 1) counterclockwise.
Ifgedip+ 1,9+ 1) # 1, thenr = ged(p + 1,q + 1) — 1 and the spur traverses (q, 1) clockwise.

Proof. Focus on the set of the broken segments composing the first half travel S; whose directions
corresponds to the positive x-axis. Let u (v respectively) be the number of the regular hexagons that
S1 passes through in the top row (the rightmost column respectively) of G, i.e. u,v € N, 1 < u < g,
1 < v < p. Since the spur traverses (¢, 1) clockwise, by the sum of the lengths of the elements in the
set, (p+1)u—v = quholds. Hence, (p+1)u = (g+1)v holds. We note that (v, v) € N?is the minimal
solution to the equation. Then, (p+ 1)u = (¢+ 1)v = lem(p+ 1, ¢ + 1) holds. Furthermore, this fact
together with (p+1)(¢+1) = lem(p+1,¢+1)ged(p+1, ¢+ 1) shows that ged(p+1, ¢+ 1) = 4,
gedlp+1,q+1) = %. On the other hand, by an argument of the proof of Lemma 3.12, the regular
hexagons in the leftmost column of G that S; passes through are located per distance of  + 1. The
same is true for regular hexagons in the bottom row, the rightmost column and the top row of GG. Then,
p+1 = ﬂ = r + 1 holds. These facts show that r + 1 = ged(p + 1,q + 1) holds. Since r > 1, if
gcd(p + 1 ,q+1)# 1, thenr + 1= ged(p+1,q+ 1) holds. Then, ged(p + 1,q + 1) is divided into
the following two cases for the remainder of the proof of Theorem 3.16.

We assume ged(p + 1,q + 1) # 1. Then, r = ged(p + 1,q + 1) — 1 holds. If the spur traverses
(g, 1) counterclockwise, then gcd(p + 1,q + 1) = 1 holds by the proof of Theorem 3.14. Hence, if
ged(p+1,g+ 1) # 1, thenr = ged(p + 1,q + 1) — 1 and the spur traverses (g, 1) clockwise.
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We assume ged(p + 1, ¢+ 1) = 1. If the spur traverses (g, 1) clockwise, then (p+ 1)u = (¢ + 1)v
holds by the previous argument. Since 1 < v < p, ged(p + 1, ¢ + 1) # 1 holds. This fact contradicts
ged(p+1,q+1) = 1. Then the spur on G traverses (¢, 1) counterclockwise. Hence, the CKD induced
from G is a knot diagram by Theorem 3.14. This fact together with the definition of r shows that if
gced(p+ 1,9+ 1) = 1, then r = 1 and the spur traverses (g, 1) counterclockwise. Il

Example 3.17. For a CKD induced from a 5 x ¢ honeycomb grid, if ¢ = 5, then r = 5; if ¢ = 6, then
r=1;if ¢ = 8, then r = 2; and if ¢ = 11, then » = 5 as in Figure 20.

5><5

Figure 20: CKDs induced from 5 X ¢ honeycomb grids

Corollary 3.18. If p + 1 is a prime number, then r = 1 or r = p.

Corollary 3.19. Suppose that p = 1, then r = 1. Moreover, if q is even, then the spur traverses (q, 1)
counterclockwise, otherwise it traverses (q, 1) clockwise.

Corollary 3.20. For h € N, if ¢ = h(p+ 1) — 1, then r = p and D represents a p-component link.
We consider the opposite side of Corollary 3.20.
Proposition 3.21. If p # 1 and D represents a p-component link, then ¢ € {h(p +1) — 1| h € N}.

Proof. By Theorem 3.15 and the assumption of Proposition 3.21, r = p > 2 holds. Then, by
Theorem 3.14 and r > 2, the spur traverses (g, 1) clockwise. Moreover, by the definition of T}, T}
passes through (¢, k+1), (1 < k < p—1). Let (S, T4, ...,T,-1)and (52, 51,71, ..., T,-1) be ordered
sets. By Definition 2.14 and arguments of the proofs of Lemmas 3.10 and 3.12, the elements of K7, are
lined up at the upper side of OG as follows: just (Sy, T, ...,T,_1), or the sequence (S, 771, ..., T,-1),
(S2, 51, Thy ..., Tp-1), ..., (S2, 51,1, ..., Tp—1). Hence, g € {h(p+ 1) — 1| h € N} holds. O

We assume ged(p + 1,¢ + 1) # 1. Then, » = ged(p + 1,¢ + 1) — 1 by Theorem 3.16.
Let 1 < ¢ <5 -1, 1< <EH—-1,1<m<p1l<n<q Thclosure of
G\U ((#(r+1),m) U (n,j (r +1))) is the union of r x r honeycomb grids on G where the number
of 7 X r honeycomb grids is 4 x “. Let 1 < < £, 1 < j < 2. Let G(i, ) be the 7 x r
honeycomb grid composing the union located ¢-th from the left and ;- th from the bottom on G. The
broken segments of the spur of D of slope 0 and length ¢, and the broken segments of the spur of
slope oo and length p divide G into G/(4, j) by Definition 2.14 and a similar argument of the proof of
Lemma 3.12.

We extend deformations of a CKD in Figure 12 by applying the following Step 1 and Step 2. In
Figures 21-23, 0G(i, j) is black, the interior of G (i, j) shaded, and the replacing disks pink. Since
the spur of D divides G into G(i, j)s, each crossing of D on OG(3, j) involves the spur. Thus, the
crossing is either a self crossing or a crossing of the spur and an element of the track of D. For
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ke NA < k< r—1),letT; € K}, passing through the intersections of the regular hexagon
(¢,p —r+ 1 + k) and the right side of OG. By considering the shape of each element of K}, and the
arrangement of G/(i, 7), there exist two types of arrangements of crossings of D on 9G(i, j): one self
crossing of the spur of D as (a) in Figure 21 and two adjacent crossings of the spur and 7}, as (b) in
Figure 21. Note that an arrangement (a) (an arrangement (b) respectively) in Figure 22 is composed
of a combination of two copies of an arrangement (a) (an arrangement (b) respectively) in Figure 21.
Then, the crossings in the exterior of (4, j) are self crossings as in Figures 21, 22 . Hence, for the two
types of arrangements as in Figure 21, we define extensions of deformations of Figure 12 as Step 1
and Step 2. Moreover let D(i, j) be the diagram on G (%, j) obtained by Step 1 and Step 2.

N \ (b) @—
VAN \w

Figure 22: Arrangements are composed of figures in Figure 21.

Step 1 For any self crossing of the spur of D on 0G(i, j), take a small disk, and replace it with a
new small disk as (a) in Figure 23.

Step 2 For any k, we focus on two adjacent crossings of the spur of D and T} on 0G(i, j). Take
a small disk including the crossings, and replace it with a new small disk as (b) in Figure 23.

4 N ’ i \
VN >\ v ,,,\— )\_

Figure 23: Deformations of a self crossing of the spur and two crossings of the spur and 7},

The diagram D(i, 7) is regarded as a CKD induced from G (4, 7) by the over/under information of
the crossings of D. For any ¢, 7, k, let tkD(” ) e IC}B (id) passing through the intersection of the regular
hexagon (i(r +1) — 1,(j — 1)(r + 1) + 1 + k) and the right side of 0G(i, j). By Step 1, Step 2 and

the shapes of the elements of 7,, the following theorem holds.

Theorem 3.22. For any i, j, k, the spur of D(i,7) ( tkD(i’j ) respectively) corresponds to the spur of D
(I}, respectively).
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The color of an element of IC* obtamed by Step 1, Step 2 coincides the color of the corre-
sponding element of K7,.

o 1 ptl
Corollary 3.23. D(i,j) || D(&, 25).

Proposition 3.24. Any crossing of D on G\ |J G(i, j) is a self crossing.

Example 3.25. Let D be the CKD induced from the 7 x 11 honeycomb grid. Thenr = 3,1 < < 1:,)1—;31,

1< < gi—}, 1 <k <3 —1. The spur of D(i, j) (tkD(i’j ) respectively) corresponds to the spur of D

(T} respectively) as in Figure 24. Any crossing of D on G \ | J G(¢, j) is a self crossing.

seeeaee X e
‘&_\_‘_u\_\ ealeeg _\_> S; A A
T AL LI XA RTS ROR J fo e J e gy g
(X I XXX IRK XL i XA AR X XXX D)
‘ (/ A . ‘/1\/,1\; z\/x//\/\‘ \J ,‘ ,;(‘ Oﬁj C > -
CIIITIIITITIS Y Oy O o C

Figure 24: From left to right - D; the figure obtained from D by applying Step 1 and Step 2; | J D(¢, j)
on G5 Don G\ |JG(3,j).

Corollary 3.26. The number of the self crossings of the spur of D is 12(Iil — )(Zi_} - 1)+

Q(fﬁ - 1)+ 2(q+1 — 1). The number of the self crossings of each element of the track of D is
1 g+l 1 1 1/g+1

fil ' gi_l + (fil - l)gil + ]:11(?"1_1 — 1)

Proposition 3.27. For h € N, if ¢ = h(p+ 1) — 1, then r = p and each element of K3, is the diagram

of a trivial knot.

Proof. By Corollary 3.20 and the assumption of Proposition 3.27, » = p. Hence we have 7 = 1 by
1 <5< pﬁ This fact together with Propositions 3.11, 3.24 and Corollary 3.23 shows that any
crossing of any element of K7, is nugatory. Then, Proposition 3.27 holds. [

Theorem 3.28. Any element of the track of D is uniquely determined up to plane ambient isotopy.

Proof. Let D,, be the CKD induced from a p x p honeycomb grid. The number of the elements of
ICEW is p by Theorems 3.15 and 3.16. By Proposition 3.11, each element of the track of D, has
one self crossing. The crossing of each element of the track consists of two line segments of slopes 0
and co. Thus, the over/under information of the crossing is uniquely determined. Hence, each element
of the track of D,,, is unique up to plane ambient isotopy.

For any 7, j, k € N, the above argument and preliminaries of Theorem 3.22 show that tD(l 7 and

tkDflj obtained from D is unique up to plane ambient isotopy, where 1 < i < £, 1 < j < pi},

1 <k <r — 1. Moreover, for any ¢, j, k € N, by Theorem 3.22 and Proposition 3.24, ¢, DE3) and
tkD(i/H’j ) are connected by a self crossing of T}, where 1 < i’ < ?‘f% — 1. The crossing consists of
two line segments of slopes —1 and 0. Then, the over/under information of the crossing is uniquely
determined. Slmﬂarly, forany i, ',k € N, 2" and """ are connected by a self crossing of T,
where 1 < j' < i%l — 1. The crossing consists of two line segments of slopes —1 and oco. Then, the
over/under information of the crossing is uniquely determined. Therefore, any element of the track of

D is uniquely determined up to plane ambient isotopy. O
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Proposition 3.29. Any element of K7, is alternating.

Proof. If p = 1 (ged(p + 1, + 1) = 1 respectively), D is a knot diagram by Corollaly 3.19
(Theorems 3.15 and 3.16 respectively). Thus, Proposition 3.29 holds. If p > 2, ged(p+1,q+1) # 1
andq = h(p+1)—1(h € N), then any element of K}, is alternating by Corollary 3.23, Propositions 3.11
and 3.24. In the remainder of this proof, suppose that p > 2, ged(p+1,q+1) # land ¢ # h(p+1)—1
(h € N). Let Pk be a projection obtained from K € K7,.

First, we show that Py has equilateral triangles (i.e. a triangle whose three sides are equal in
length) and hexagons on the interior of G. Then, K consists of the broken segments each with slope
—1, 0 or co. For any broken segment, take the straight line that includes itself.

Assume K is an element of the track. The distance between any pair of parallel and adjacent broken
segments of /K with length greater than % on (G is r + 1 by an argument of the proof of Lemma 3.10.
Fix a broken segment of K of slope 0 (co, —1, respectively) and length greater than %, and let X; (Y,
Zy, respectively) be the set of infinite parallel straight lines which are arranged per distance of r + 1
on the plane, where the set includes the straight line obtained from the broken segment. Three lines -
one from each of Xj, Y}, and Z; - form an equilateral triangle. Six lines - two from each set - form a
hexagon. Hence, X, U Y; U Z; divides the plane into the equilateral triangles and the hexagons. Then,
Py has the equilateral triangles and the hexagons on the interior of G.

Assume K is the spur. The parallel and adjacent straight lines obtained from broken segments of
K alternate between distance of  and 1 by an argument of the proof of Lemma 3.12. Fix a broken
segment of S; C K with length greater than % The image on G obtained from the fixed broken
segment of S; of slope 0 (oo, —1, respectively) by the parallel translation of —1 along the y-axis
(z-axis, z-axis respectively) is the broken segment of S; C K by Lemma 3.12. Let X, (Y;, Z,,
respectively) be the set of infinite parallel straight lines which are arranged per distance of 4+ 1 on
the plane, where the set includes the straight line obtained from the fixed broken segment of slope
0 (o0, —1, respectively). Let X! (Y., Z respectively) be the set obtained by translating X (Y5, Z
respectively) by —1 along the y-axis (z-axis, z-axis respectively). Hence, X,U X UY,UY/UZ,UZ!
divides the plane into the equilateral triangles and the hexagons as in Figure 25. Then, Py has the
equilateral triangles and the hexagons on the interior of G.

GO

T 1

1

/ XN/ XN/ XN/ X

Figure 25: Elements of X ,UY,UZ, (X.UY/UZ! respectively) are depicted in red (brown respectively)

Second, we show that any crossing of /K corresponds to a vertex of the polygons on the interior
of G. Assume K is an element of the track. The shape of A’ is recognized by Corollaries 3.23, 3.26,
Theorem 3.22 and Proposition 3.24. Recall that there exists just one crossing of t,?(” ) on G(i,7)

forl <i< %, 1<j5< %. For any D(i,7) ((,7) # (1,1;’1}), (%, 1)) and k, the crossing of
D(i,j)
by

corresponds to the vertex of at least one equilateral triangle on the interior of G. We checked

b E . Z% — 2 crossings. The self crossings on G \ | J G(4, j) correspond to the remaining vertices of
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the equilateral triangle. We checked (% — )Z% - fﬁ (;Ijt—} — 1) crossings. By the assumption of
p and g, there are two or more broken segments of K of slope —1 and length greater than % on (.
The same is true for broken segments of slope 0 or co and length greater than % on (G. Recall that the
distance between any pair of parallel and adjacent broken segments of K with length greater than %

on G is r + 1. Then, for (i, j) = (1, fﬁ), (%, 1), K has two broken segments that passes through

G(i,7) of slope —1, and tkD(i’j ) has two broken segments of slopes 0 and oo and length greater than
% by the shape of D(i, 7). The crossing of tkD(i’j ) corresponds to the crossing of K consisting of the
broken segments of slopes 0 and co by Theorem 3.22 and Corollary 3.23. By the assumption of p
and ¢, there exists the broken segment of K of slope 0 and length greater than % on (G at a distance
of r + 1 from the broken segment of K of slope 0. The same is true for the broken segment of
slope oo on GG. The straight lines including these six broken segments form a hexagon on the interior
of G. Thus, for (i,7) = (1, fﬁ), (f{i—i, 1), the crossing of tkD(i’j) corresponds to the vertex of the
hexagon on the interior of G. We checked two crossings. Then, we checked all crossings of K by
Corollary 3.26. Hence, any crossing of K corresponds to a vertex of the equilateral triangles or a
vertex of the hexagons on the interior of G in this case.

Assume K is the spur. The shape of K is recognized by Corollaries 3.23, 3.26, Theorem 3.22
and Proposition 3.24. Any crossing of K is in the closure of G \ |J G (3, j) by Proposition 3.11 and
Corollary 3.23. Any G(i,j) is obtained by dividing G by the broken segments of K of slope 0 and
length ¢, and the broken segments of K of slope oo and length p. Then, the union of the straight lines
obtained from the broken segments of K of slope —1 and the straight lines obtained from the broken
segments that divide GG forms the equilateral triangles and the regular hexagons with side length % on
the interior of GG. Let A be the set of the crossings of K each of which is corresponding to a vertex
of the equilateral triangles. We checked 12(% - )(z% — 1) crossings. Let B be the set of the
crossings of K not in A. Since any element of B is not in A and on dG(i, j) having an intersection
with G, any element of B corresponds to a vertex of the equilateral triangles with side length r — %
on the interior of G. We checked 2(2 — 1) 4 2(%1 — 1) crossings. Then, we checked all crossings

of K by Corollary 3.26. Hence, anyrc+rlossing of KTZ(l)rresponds to a vertex of the equilateral triangles
on the interior of G in this case.

Finally, we show that the crossings of A corresponding to the vertices of a polygon on the interior of
G are “locally alternating”, in order to show that K is alternating. Take a compact region intersecting
with a diagram of a link on the plane. The intersection points of the boundary of the region and
the diagram are transverse double points. The intersection of the region and the diagram is called
the restricted diagram by the region. We say that the restricted diagram by the region is locally
alternating if the over/under information of the crossings on every segment in the restricted diagram
appears alternately. For any polygon of Py on the interior of GG, take a neighborhood of the polygon
that is not including a vertex of another polygon. The neighborhood corresponds to the compact
region intersecting /. If the restricted diagrams by the neighborhoods are locally alternating, then
K is alternating because any crossing of K corresponds to a vertex of the polygons on the interior of
(. Hence, the restricted diagram by the neighborhood is locally alternating because the over/under
information of the crossings on every segment in the restricted diagram by the neighborhood appears
alternately by the slopes of the broken segments of /. Therefore, K is alternating.

In all cases, any element of K7, is alternating. [l

Example 3.30. Let D be the CKD induced from the 7 x 11 honeycomb grid as in Figure 8. Then,
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the spur passes through (11, 1). Moreover, the elements of the track (K, K3 € K7,) are unique up to
plane ambient isotopy. Any element of K7, is alternating.
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